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Abstract 

A consistent formulation of the K+TITI weak decay amplitudes is 
presented within the context of quantum chromodynamics. Using the large 
Nc limit, the perturbative short distance treatment is combined with a 
bosonized version of QCD for the large distance contributions to the weak 
matrix elements. The calculated large distance contributions provide a 
further enhancement of the AI= l/2 amplitudes and suppression of the A1=3/2 
amplitudes as indicated by the data. The large distance contributions to the 
AS=2 amplitudes for K”-iTb mixing are estimated and a consistent value of the 
B parameter is obtained. 
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The large enhancements observed for the Al= I/2 weak decay amplitudes 
have long been a puzzle for the standard model. Partial explanations of the 
observed effects have involved short distance QCD evolution of the relevant 
weak operators [II and the Penguin diagram contributions 121. These short 
distance effects are not sufficient to explain the full enhancements seen in the 
data. The recent efforts have therefore focused on the long distance contri- 
butions to the weak matrix elements. Preliminary results of detailed lattice 
computations of these matrix elements are reported in contributions to this 
meeting 131. I will present an alternative method of calculation which makes 
use of a bosonization of QCD which should be valid in the large Nc limit 141. 

The conventional treatment of the weak decay processes uses an effective 
weak Hamiltonian where the short distance effects of the W-boson propagator, 
heavy quarks, and perturbative QCD have been absorbed in calculable 
coefficient functions. The weak Hamiltonian can be represented as 

HAS”’ = - (GF/JTI.S,~C,~C~~ I: Iz~(J.I) + IY.yi(JI)].Q,(p) 

where r is given by the KM angles. 7: = (s# + (s2.s3.c2/c,.C3),e-i’s and the 
dominant operators for low energy matrix elements are given by 

Ql q (~d)V-A (UU)V-* 

- - 
02 = (s u&. (u d& (2) 

- - 
Q6 = - 8+, (5~ 9~) (qft dL). 

The coefficient functions Z~(JI) and LJi(p) have a strong dependence on the 
normalization scale, Jo, at low energy due to the QCD corrections. 

The amplitudes for K+?rn decay are given by the matrix elements of‘ the 
weak Hamiltonian given in Eq( 1 I. 

It is clear that the p dependence of the coefficient functions must be cancelled 
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by the p dependence of the operator matrix elements 151. Many different 
methods have been used to estimate these matrix elements including 
factorization (or vacuum insertion), bag models, sum rules. chiral quark 
models &hiral >> &-&, and the lattice methods mentioned above 131. 
None of these methods, except perhaps the lattice, have demonstrated the 
explicit cancellation of the p dependence and hence a consistent matching of 
the short and long distance effects. I will describe an alternate method which 
makes use of the large NC limit of QCD where NC is the number of colors. 

The large NC expansion of QCD is defined by the limit, NC+ m with cxs.NC 
held fixed. In this limit the leading contributions come from planar diagrams 
with the least number of quark loops. Nonplanar diagrams and the insertion 
of additional quark loops are suppressed by powers of 1 /NC. This planar limit 
of QCD produces a kind of hadronic string theory which has yet to be solved 
exactly. The order of perturbative QCD corrections is easily computed with the 
current vertex corrections being o(l) and the usual weak evolution and 
penguin contributions being 0(1/N,). Hence, only the factorized matrix 
elements contribute in the leading NC limit, and these are simply evaluated as 
the matrix elements of the weak currents are known. All nonfactorizing 
contributions are formally of order l/N, At short distance, this expansion is 
quite accurate even for NC-3 141. However, there can be effects which 
compensate the 1 /NC suppression. The evolution of the weak operators is not 
suppressed if the ratio Mw/u is sufficiently large (the long evolution 
compensates for a small velocity), and the penguin suppression can be 
compensated by large matrix elements. In leading order of perturbative QCD. 
the p dependence of the weak matrix elements is given by 

j$<nn ( Q,(p)/ K> = - ~~/~x)Y&).<~TTII Q&d ( K> 

@,,(nnl Q,(F) 1 K> = - (3/2n)~&)+~ 1 QI(P)) k> 

- ;1&) -x:,(jMxn~Q&.d~K> 

where all contributions are formally Of 1 /NC) since cxs is Of 1 IN,). 

(4) 

The general factorized planar diagrams as shown in Fig.( la)~ are leading 



t 

Nc while the leading l/N, corrections are given by diagrams as shown in 
Fig.t 1 b). Any number of planar gluons may be added to the diagrams without 
changing the order of the large Nc expansion. In this large Nc or string limit, 
QCD reduces to a theory of weakly interacting meson resonances. Therefore 

Figure la: Factorized, Figure lb: Nonfactorized, 
leading NC amplitude. planar amplitude, O( 1 /NC), 

we should be able to obtain a dual meson representation of @ID with the 
dynamics provided by the Interactions of a complete set of meson resonances, 
Tr , p , f , . . . All local operators t’u3PY. TY, etc) should also have a meson 
representation. The meson theory is fully equivalent to the quark theory in 
the large Nc limit and can be considered as a complete bosonization of the 
quark theory such as is commonly done in two dimensional field theories. 
However, the large Nc limit provides an essential simplification as the leading 
quark amplitudes are completely reproduced by the tree amplitudes for the 
meson theory. The 1 /Nc expansion corresponds to the meson loop expansion. 
The meson theory including all meson resonances and loops is therefore 
equivalent to complete quark theory which includes the sum of both 
perturbative and nonperturbative QCD. 

Of course, in the meson representation short distance physics is 
exceedingly complex requiring many higher mass resonance states and 
knowledge of their complex interactions. On the other hand, the quark theory 
is quite simple and perturbative at short distance while the long distance 
physics is dominated by the nonperturbative aspects of QCD. We will try to 
take advantage of the simple aspects of both representations of QCD by 
introducing a scale Q to separate the short and long distance physics. For 
short distances, Q2>p2, we will use the quark theory and for long distances, 
02<u2, we will use the meson theory. Since both theories provide a complete 
description of the physics, nothing should depend on the scale J.L However, if 
we consider extreme limits for the scale u, there, can be important 
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simplifications. At short distance, the quarks are accurately described by 
perturbative QCD. and the nonperturbative aspects are small. At large 
distance, the meson theory should be truncated on the lightest meson states. 
and in the extreme limit it should be sufficient to keep only the pseudoscalar 
mesons states with their dynamics specified by unique chiral Lagrangians. A 
matching between these two extreme pictures may be possible if a sharp 
transition exists between perturbative and nonperturbative gCD at the 
common scale, AQCD E Aairal = mconstituent quark. Hence. We will use 
the truncated meson theory to compute the meson matrix elements which 
must be matched to the quark theory al a reasonable scale for both theories. 
We find this scale to be about 0.6 - 0.8 GeV in our calculations. 

The truncated meson theory is described by the following chiral 
Lagrangian, 

Ltr q (f2n/4).[ tr(DpU~DhJ+) +r.trimU+U*m) -(r/A2X)~tr(mD2U+D2U’m) 1 (5) 

where U q U(X) is the unitary chiral matrix, D,,U = a,U + i,W,,U is the gauge 
covariant derivative, and m is the quark mass matrix. Using the action of 
Eq.(5), we can obtain a consistent formulation of the currents, 

and densities. 

(QRjqLi) = - (fzn/4).r.[ U - (vfvX).a2u lij 

A\x 2 1 GeV is the scale of the higher derivative terms in the action of Eq.(5) 
which are expected to exist in any truncated theory and are needed for the a 
consistent evaluation of the penguin matrix elements 161. We emphasixe that 
Ltr is not the usual effective tree Lagrangian, but loops must be included to a 
consistent order in the 1 /NC expansion. 

There have been similar approaches using chiral Lagrangians which differ 
from the present approach I41 in essential ways The usual factorized 
procedure I61 is equivalent to the use of chiral Lagrangians in tree 



approximation which neglects calculable l/N, corrections and ignores all 
nonfactorixing contributions. Chiral perturbation theory I71 includes 
calculable loop effects but only those which are higher order in the meson 
masses or momenta. However, these two approaches are not consistent with 
the weak operators defined in the quark picture and cannot be used with the 
coefficient functions given in Eq.t3) to obtain the complete weak decay 
amplitudes. Another approach I81 uses the spontaneous chiral symmetry 
breaking in the quark picture to introduce the meson interactions and 
incorporate more of the long distance physics in weak matrix elements. 

The essential difference of our method 141 concerns the use of a physical 
cutoff scale, fl=j.t. to separate the short and long distance physics 
contributions. The meson theory must be computed with this cutoff, M. 
This cutoff is essential in the truncated meson theory because of the quadratic 
divergences. It is this dependence on the cutoff, particularly the quadratic 
divergences which allows us to match the short distance quark picture. A 
more complete meson theory including higher meson resonances might not 
have the quadratic divergences of the truncated theory but would still require 
the systematic introduction of the scale M. 

Our truncated chiral Lagrangian depends on parameters, f#l) and AX 
which can be determined in terms of the physical meson decay consants. Fn 
and FK, through Ot 1 IN,). We obtain 

f2,(tl) = F2n - 2.(fn.mn/AX)2 + 2.1&m,) + 2.12(mK) (8) 

with 12(m) = (47’~)~~ ~D’-12 - m2. log(l+f12/m2)1 

FK/Fx = 1 + (m2K-m2,.$A2X - (3/8~f2,)~~2~I~(mK)+3~12(m8)-5~12(m~)l (9) 

From Eq.(8) we see that f2n has a quadratically divergent renormalization 
where l/f2R is the effective meson coupling constant at scale M. The result 
for FK/F, agrees with the usual chiral perturbation theory results 16.71. The 
parameter AX = I GeV using Eq(9) and = 0.9 GeV if only the leading NC 
terms are kept. 

To compute the evolution of the K-VW weak matrix elements. we must 
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include the full one loop contributions which contribute nonfactorizing matrix 
elements of the weak operators, Q, and Q2. We have computed these matrix 
elements in Ref.141. From the structure of these matrix elements, we can 
abstract the effective evolution properties of the weak operators. We relate 
the operators defined at scale M to the operators defined at zero (or trees). 

&a, = ( l/f2& F,(H) Q,(O) 

(10) 
SQ;! = (I /fy5() F,(M) Q,(O) + (1/f2,) . F&‘-I) (Q,(o) - Q,(O)) 

with 

F,(M) q - 2.t12/(4nj2 + .... 
(1 I) 

F2(N) = f12/(4T1)2 + ..” 

The running of these matrix elements as seen through the M2 dependence of 
Eq.( 11) has the correct structure to match the short distance quark evolution. 
Not only is the Q t-Q2 mixing properly represented but there is also a term in 
St& which represents the continued evolution of the penguin diagrams. To 
evaluate fully the penguin contributions to this order in the l/N, expansion, 
we can use the leading NC expressions for the quark densities given in Eq.(7) 
and the Qs operator given in Eq.(Z), 

- - 
Q6 = - 8.Cq (sL qR).(qR dL) q 4.f 4 ~(r/r\X)Wu43u+),, 71 

(12) 

= 4.(r/AX)2 .[Q2(0) - Q,(O)1 

From this expression for the matrix elements of Q6 and the expressions for Q t 
and Q2 given in Eq.( 11) we can evaluate the full li+l~n decay amplitudes. The 
details are given in Ref.141. The summary of the quark and meson evolution 
is given in Table 1. From the results given in Table 1 it is clear that the full 
evolution of the weak matrix elements provides a significant enhancement of 
the Al= i/2 amplitude and sufficient suppression of the AI=3/2 amplitudes. It 
is also clear that the penguin contribution does not dominate our results which 
is consistent with the lattice calculations 131. 
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The use of the large NC limit to obtain a boson representation of QCD gives 
a consistent method for evaluating weak decay amplitudes. Despite the 
severe truncation of the meson theory, we find proper the scale dependence of 
the meson matrix elements achieved when the quadratic divergent terms are 
properly included. Despite the crude approximations used, the combined 
quark and meson calculations give a large enhancement of the of the Al= I /2 
and a similar suppression of the Al=3/2 which seems consistent with the data. 
The procedure can certainly be improved through a less severe truncation of 
the meson theory by including vector mesons, etc which could allow 
extrapolation of the meson theory to higher scales. The leading log quark 
calculation could also be improved by computing the higher orders in 
perturbative QZD. The matching conditions between the quark and meson 
contributions could be done in a more sophisticated manner than by simply 
equating the normalization scale of the quark operators with the cutoff of the 
meson theory as we have done above. 

Finally we have also applied these methods to the CP violating amplitudes 
in Ref.191. 6’ cx Im A,-, cOmes mostly from the penguin contribution associated 
with the top quark which is dominated by short distance effects. F 0: lm M,2 
comes from the box diagram which is sensitive to the long distance effects. 
Using the meson theory described above, the B parameter can be computed 
with the result, B = 0.66 2 0.1 which can be compared to 0.75 for the leading 
NC calculation. It is again the inclusion of the quadratic divergent terms in 
the meson theory which are responsible for the stable behavior of the large NC 
expansion in contrast to the results obtained from chiral perturbation theory. 
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Table I: The evolution of the weak decay amplitudes for K’XTI. 

A(K+nn) P % 
IO-* GeV GeV GeV 

DATA 

Initial mW 

w/ quark 
evlolutlon 
only 

mC 

0.8 

w/ quark 
evolutton 
and pengum 

0.8 

0.8 

w/quark, 
penguin, 
and meson 
evolution 

.6-.8 

.6-.8 

0.125 

0.150 

0.125 

0.150 

Ko(Al= l/2) K”(AI=3/2) K+(AI=3/2) 

38.2 I .o I .a 

3.9 3.9 3.9 

6.8 2.9 

8.8 2.6 

2. 9 

2.6 

19.0 2.6 2.6 

16.0 2.6 2.6 

30.0 I .6 1.6 

27.0 I.6 1.6 

.6-.a 0. I75 25.0 I .6 I .6 
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